US ERA ARCHIVE DOCUMENT # Proposed **Total Maximum Daily Loads** for **Braden River** and **Cedar Creek** **WBIDs 1914 and 1926** **Nutrients and Dissolved Oxygen** **September 30, 2009** # **Table of Contents** | 1. | INT | RODUCTION | 1 | |----|-------|--|----| | 2. | PRO | BLEM DEFINITION | 1 | | 3. | WAT | TERSHED DESCRIPTION | 4 | | 4. | WAT | TER QUALITY STANDARDS/TMDL TARGETS | 4 | | | 4.1. | Nutrients: | 4 | | | 4.2. | DISSOLVED OXYGEN CRITERIA: | 5 | | | 4.3. | Natural Conditions | 5 | | 5. | WAT | FER QUALITY ASSESSMENT | 5 | | | 5.1. | Water Quality Data | 5 | | | 5.1.1 | . WBID: 1914 Braden River | 6 | | | 5.1.2 | . WBID1926 Cedar Creek | 11 | | 6. | SOU | RCE AND LOAD ASSESSMENT | 17 | | | 6.1. | POINT SOURCES | 18 | | | 6.1.1 | . Municipal Separate Stormwater System Permits | 18 | | | 6.2. | Non Point Sources | 19 | | | 6.2.1 | . Urban Areas | 20 | | | 6.2.2 | . Agriculture | 21 | | | 6.2.3 | . Rangeland | 21 | | | 6.2.4 | . Upland Forests | 21 | | | 6.2.5 | . Water and Wetlands | 21 | | | 6.2.6 | . Barren Land | 21 | | | 6.2.7 | Transportation, Communications and Utilities | 22 | | 7. | ANA | LYTICAL APPROACH | 22 | | | 7.1. | LOADING SIMULATION PROGRAM C++ (LSPC) | 22 | | | | | | | | 7.2. | WATER QUALITY ANALYSIS SIMULATION PROGRAM (WASP) | 23 | |----|------------------|---|----| | | 7.3. | SCENARIOS | 23 | | | 7.3.1. | . Current Condition | 23 | | | 7.3.2 | Natural Condition | 24 | | | 7.4. | 30 PERCENT REDUCTION SCENARIO | 25 | | | 7.4.1 | . TMDL | 26 | | 8. | TMI | OL DETERMINATION | 26 | | | 8.1. | CRITICAL CONDITIONS AND SEASONAL VARIATION | 27 | | | 8.2. | Margin of Safety | 27 | | | 8.3. | WASTE LOAD ALLOCATIONS | 28 | | | 8.3.1 | NPDES Dischargers | 28 | | | 8.3.2 | . Municipal Separate Storm System Permits | 28 | | | 8.4. | LOAD ALLOCATIONS | 29 | | 9. | REF | ERENCES | 30 | | | | | | | | | Table of Figures | | | F | igure 1 L | OCATION MAP BRADEN RIVER AND CEDAR CREEK | 3 | | F | IGURE 2 S | TATION LOCATIONS FOR WBID: 1914 BRADEN RIVER | 6 | | F | igure 3 V | VBID: 1914 Braden River Measured Dissolved Oxygen | 7 | | F | igure 4 W | VBID 1914: Braden River Creek Measured BOD | 8 | | F | igure 5 W | VBID: 1914 Creek Measured Total Nitrogen | 9 | | F | igure 6 W | VBID: 1914 Braden River Creek Measured Total Phosphorus | 10 | | F | igure 7 V | VBID: 1914 Creek Measured Chlorophyll a Concentrations | 11 | | F | IGURE 8 S | TATION LOCATIONS FOR WBID: 1926 CEDAR CREEK | 12 | | F | igure 9 V | VBID: 1926 Cedar Creek Measured Dissolved Oxygen | 13 | | FIGURE 10 WBID: 1926 CEDAR CREEK MEASURED BOD | 14 | |---|----| | FIGURE 11 WBID: 1926 CEDAR CREEK MEASURED TOTAL NITROGEN | 15 | | FIGURE 12 WBID: 1926 CEDAR CREEK MEASURED TOTAL PHOSPHORUS | 16 | | FIGURE 13 WBID: 1926 CEDAR CREEK MEASURED CHLOROPHYLL A CONCENTRATIONS | 17 | | FIGURE 14 BRADEN RIVER AND CEDAR CREEK LANDUSE DISTRIBUTION | 20 | | | | | Table of Tables | | | TABLE 1 WATER QUALITY MONITORING STATIONS FOR WBID 1914: BRADEN RIVER | 6 | | Table 2 Water Quality Monitoring Stations for WBID 1926: Cedar Creek | 11 | | TABLE 3 MS4 PERMITS POTENTIALLY IMPACTED BY TMDL | 19 | | TABLE 4 LANDUSE DISTRIBUTION IN BRADEN RIVER AND CEDAR CREEK WATERSHED | 19 | | TABLE 5 MODEL CALIBRATION SUMMARY | 23 | | TABLE 6 EXISTING CONDITION ANNUAL AVERAGE MODEL PREDICTIONS | 24 | | TABLE 7 BRADEN RIVER AND CEDAR CREEK NUTRIENT LOADS (2002-2008) | 24 | | TABLE 8 NATURAL CONDITION ANNUAL AVERAGE MODEL PREDICTIONS | 24 | | TABLE 9 NATURAL CONDITION ANNUAL AVERAGE NUTRIENT LOADS | 25 | | TABLE 10 30% REDUCTION OF ANNUAL AVERAGE NUTRIENT LOADS | 25 | | TABLE 11 30% REDUCTION OF ANNUAL AVERAGE NUTRIENT CONCENTRATIONS | 25 | | TABLE 12 TMDL REDUCTION SCENARIO. | 26 | | TABLE 13 TMDL LOAD ALLOCATIONS FOR BRADEN RIVER AND CEDAR CREEK (1914 AND 1926) | 27 | #### **SUMMARY SHEET** ## **Total Maximum Daily Load (TMDL)** 1. 303(d) Listed Segment: 1914 and 1926: Braden River and Cedar Creek Tampa Bay Tributaries 2. TMDL Endpoints/Targets: Nutrients and Dissolved Oxygen 3. TMDL Technical Approach Calibration of a watershed and water quality model to current conditions, load reduction scenarios to meet water quality standards. 4. TMDL Waste Load and Load Allocation: | | Current Condition | | TMDL Condition | | LA & MS4 | |------------------|-------------------|------------|----------------|------------|-------------| | Constituent | WLA (kg/yr) | LA (kg/yr) | WLA (kg/yr) | LA (kg/yr) | % Reduction | | Total Nitrogen | N/A | 65,884 | N/A | 46,119 | 30% | | Total Phosphorus | N/A | 14,744 | N/A | 10,321 | 30% | | BOD | N/A | 378,634 | N/A | 265,044 | 30% | - 5. Endangered Species Present: No - 6. USEPA Lead TMDL or Other: USEPA - 7. TMDL Considers Point Sources/Non Point Sources: MS4 and Non Point Source - 8. Major NPDES Discharges to surface waters addressed in USEPA TMDL: None ## 1. Introduction Section 303(d) of the Clean Water Act requires each state to list those waters within its boundaries for which technology based effluent limitations are not stringent enough to protect any water quality standard applicable to such waters. Listed waters are prioritized with respect to designated use classifications and the severity of pollution. In accordance with this prioritization, states are required to develop Total Maximum Daily Loads (TMDLs) for those water bodies that are not meeting water quality standards. The TMDL process establishes the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and instream water quality conditions, so that states can establish water quality based controls to reduce pollution from both point and nonpoint sources and restore and maintain the quality of their water resources (USEPA, 1991). The State of Florida Department of Environmental Protection (FDEP) developed a statewide, watershed-based approach to water resource management. Under the watershed management approach, water resources are managed on the basis of natural boundaries, such as river basins, rather than political boundaries. The watershed management approach is the framework FDEP uses for implementing TMDLs. The state's 52 basins are divided into five groups. Water quality is assessed in each group on a rotating five-year cycle. Tampa Bay Tributaries is a Group 2 basin; it was designated for TMDL development by a consent decree. FDEP established five water management districts (WMD) responsible for managing ground and surface water supplies in the counties encompassing the districts. Braden River and Cedar Creek 1914 and 1926 reside in the Southwest Florida Water Management District (SWFWMD). For the purpose of planning and management, the WMDs divided the district into planning units defined as either an individual primary tributary basin or a group of adjacent primary tributary basins with similar characteristics. These planning units contain smaller, hydrological based units called drainage basins, which are further divided by FDEP into "water segments". A water segment usually contains only one unique waterbody type (stream, lake, canal, etc.) and is about 5 square miles. Unique numbers or waterbody identification (WBIDs) numbers are assigned to each water segment. ## 2. Problem Definition The TMDLs addressed in this document are being established pursuant to commitments made by the United States Environmental Protection Agency (EPA) in the 1998 Consent Decree in the Florida TMDL lawsuit (Florida Wildlife Federation, et al. v. Carol Browner, et al., Civil Action No. 4: 98CV356-WS, 1998). That Consent Decree established a schedule for TMDL development for waters listed on Florida's EPA approved 1998 section 303(d) list. The 1998 section 303(d) list identified numerous Water Body Identifications (WBIDs) in the Upper St. Johns River Basin as not supporting water quality standards (WQS). After assessing all readily available water quality data, EPA is responsible for developing a TMDL in WBID 1914 and 1926 Braden River and Cedar Creek (Figure 1). The parameters addressed in these TMDLs are Nutrients and Dissolved Oxygen. Most waterbodies in the Tampa Tributaries are designated as Class III waters having a designated use for recreation, and propagation and maintenance of a healthy, well-balanced population of fish and wildlife. The level of impairment is denoted as threatened, partially or not supporting designated uses. A waterbody that is classified as threatened currently meets WQS but trends indicate the designated use may not be met in the next listing cycle. A waterbody classified as partially supporting designated uses is defined as somewhat impacted by pollution and water quality criteria are exceeded on some frequency. For this category, water quality is considered moderately impacted. A waterbody that is categorized as not supporting is highly impacted by pollution and water quality criteria are exceeded on a regular or frequent basis. In such waterbodies, water quality is considered severely impacted. To determine the status of surface water quality in the state, three categories of data – chemistry data, biological data, and fish consumption advisories – were evaluated to determine potential impairments. The level of impairment is defined in the Identification of Impaired Surface Waters Rule (IWR), Section 62-303 of the Florida Administrative Code (F.A.C.). The IWR is FDEP's methodology for determining whether waters should be included on the state's planning list and verified list. Potential impairments are determined by assessing whether a waterbody meets the criteria for inclusion on the planning list. Once a waterbody is on the planning list, additional data and information will be collected and examined to determine if the water should be included on the verified list. Figure 1 Location
Map Braden River and Cedar Creek ## 3. Watershed Description Braden River (~13.42 miles) flows in a westerly direction just above the Bill Evers Reservoir. Rattlesnake Slough (~3.72 miles) flows in an easterly direction feeding into the Braden River just above the Bill Evers Reservoir. Cedar Creek (~1.43 miles) flows in a northerly direction feeding into the Braden River approximately a half mile above the Bill Evers Reservoir. ## 4. Water Quality Standards/TMDL Targets The waterbodies in the Braden River and Cedar Creek are Class III Freshwater with a designated use of Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife. Designated use classifications are described in Florida's water quality standards. See Section 62-302.400, F.A.C. Water quality criteria for protection of all classes of waters are established in Section 62-302.530, F.A.C. Individual criteria should be considered in conjunction with other provisions in water quality standards, including Section 62-302.500 F.A.C., which established minimum criteria that apply to all waters unless alternative criteria are specified Section 62-302.530, F.A.C. Several of the WBIDs addressed in this report were listed due to elevated concentrations of chlorophyll a. While there is no water quality standard specifically for chlorophyll a, elevated levels of chlorophyll a are frequently associated with a violation of the narrative nutrient standard, which is described below. #### 4.1. Nutrients: The designated use of Class III waters is recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife. FDEP has not adopted a numeric nutrient criterion for Class III waters. Therefore, the Class III narrative criterion applies to Braden River and Cedar Creek: The discharge of nutrients shall continue to be limited as needed to prevent violations of other standards contained in this chapter. Man induced nutrient enrichment (total nitrogen and total phosphorus) shall be considered degradation in relation to the provisions of Section 62-302.300, 62-302.700, and 62-4.242, FAC. 62-302.530(48)(b), F.A.C. In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna. 62-302.530(48)(b), F.A.C. Because the State of Florida does not have numeric criteria for nutrients, chlorophyll and DO levels are used to indicate whether nutrients are present in excessive amounts. ## 4.2. Dissolved Oxygen Criteria: Numeric criteria for DO are expressed in terms of minimum and daily average concentrations. Rule 62-302(30), F.A.C., sets out the water quality criterion for the protection of Class III freshwater waters as: Shall not be less than 5.0 mg/l. Normal daily and seasonal fluctuations above these levels shall be maintained. #### 4.3. Natural Conditions In addition to the standards for nutrients, DO and BOD described above, Florida's standards include provisions that address waterbodies which do not meet the standards due to natural background conditions. Florida's water quality standards provide a definition of natural background: "Natural Background" shall mean the condition of waters in the absence of maninduced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody or on historical pre-alteration data. 62-302.200(15), FAC. Florida's water quality standards also provide that: Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. 62-302.300(15) FAC ## 5. Water Quality Assessment WBIDs 1914 and 1926 Braden River and Cedar Creek were listed as not attaining its designated uses on Florida's 1998 303(d) list for nutrients and dissolved oxygen. To determine impairment an assessment of available data was conducted. The source for current ambient monitoring data for WBIDs 1914 and 1926 Braden River and Cedar Creek was the Impaired Waters Rule (IWR) data Run 35. ## 5.1. Water Quality Data The tables and figures below present the station locations and time series data for dissolved oxygen, total nitrogen, total phosphorus, and chlorophyll a observations for Braden River and Cedar Creek. ### 5.1.1. WBID: 1914 Braden River Table 1 provides a list of the water quality monitoring stations in the Braden River WBID including the date range of the observations and the number of observations. Table 1 Water Quality Monitoring Stations for WBID 1914: Braden River | Station | Station Name | First Date | Last Date | No. Obs. | |------------------|----------------------------------|-----------------|-----------------|----------| | 112WRD 02300032 | BRADEN RIVER NR LORRAINE,FLA. | 1/23/1996 12:30 | 9/8/2004 13:50 | 19 | | 21FLGW 11197 | SWC-LS-1021 UNKNOWN | 8/20/2001 12:00 | 8/20/2001 12:10 | 9 | | 21FLGW 26894 | SW2-SS-2012 UNKNOWN SMALL STREAM | 8/18/2005 14:00 | 8/18/2005 14:05 | 6 | | 21FLMANABR-1 | BRADEN RIVER NEAR RESERVOIR | 1/29/1996 11:20 | 9/14/1998 10:30 | 118 | | 21FLMANABR-2 | BRADEN RIVER AT POWERLINE | 1/29/1996 11:00 | 9/14/1998 11:00 | 123 | | 21FLMANABR-3 | BRADEN RIVER AT I-75 | 1/29/1996 10:50 | 9/14/1998 11:10 | 110 | | 21FLMANABR2 | BR2 | 1/29/1996 11:00 | 2/7/2008 10:56 | 811 | | 21FLMANABR3 | BR3 | 1/29/1996 10:50 | 6/8/2005 10:53 | 509 | | 21FLMANALL-1 | LINGER LODGE | 1/29/1996 10:30 | 8/11/1998 11:45 | 109 | | 21FLMANALL1 | LL1 | 1/29/1996 10:30 | 2/7/2008 11:13 | 853 | | 21FLMANATS-6 | BRADEN RIVER | 2/20/1996 11:00 | 9/14/1998 10:10 | 122 | | 21FLMANATS6 | TS6 | 2/20/1996 11:00 | 2/7/2008 10:27 | 814 | | 21FLTPA 24010069 | TP82 - BRADEN RIVER | 1/21/1998 10:31 | 1/21/1998 10:31 | 3 | Figure 2 Station Locations for WBID: 1914 Braden River ## **Dissolved Oxygen** Figure 3 provides a time series plot for the measured dissolved oxygen concentrations in the Braden River. There were 13 monitoring stations used in the assessment that included a total of 672 observations of which 134 (20%) fell below the water quality standard of 5 mg/l dissolved oxygen. The minimum value was 0.9 mg/l, the maximum was 12.2 mg/l and the average was 6.4 mg/l. Figure 3 WBID: 1914 Braden River Measured Dissolved Oxygen ## **Biochemical Oxygen Demand** Figure 4 provides a time series plot for the measured BOD concentrations in the Braden River. There were 5 monitoring stations used in the assessment that included a total of 331 observations. The minimum value was 0.3 mg/l, the maximum was 6.4 mg/l and the average was 2.15 mg/l. Figure 4 WBID 1914: Braden River Creek Measured BOD #### **Nutrients** For the nutrient assessment the monitoring data for total nitrogen, total phosphorus and chlorophyll a are presented. While Florida is currently working on the development and promulgation of numeric nutrient criteria, the current standards for nutrients are narrative criteria. The purpose of the nutrient assessment is to present the range, variability and average conditions for the WBID. ### Total Nitrogen Figure 5 provides a time series plot for the measured total nitrogen concentrations in Braden River. There were 12 monitoring stations used in the assessment that included a total of 639 observations. The minimum value was 0.03 mg/l, the maximum was 2.9 mg/l and the average was 0.87 mg/l. Figure 5 WBID: 1914 Creek Measured Total Nitrogen ### Total Phosphorus Figure 6 provides a time series plot for the measured total phosphorus concentrations in Braden River. There were 12 monitoring stations used in the assessment that included a total of 572 observations. The minimum value was 0.0 mg/l, the maximum was 1.89 mg/l and the average was 0.25 mg/l. Figure 6 WBID: 1914 Braden River Creek Measured Total Phosphorus #### Chlorophyll a Figure 7 provides a time series plot for corrected chlorophyll a concentrations in Braden River. There were 6 monitoring stations used in the assessment that included a total of 110 observations. The minimum value was 1.00 μ g/l, the maximum was 95 μ g/l and the average was 7.4 μ g/l. Figure 7 WBID: 1914 Creek Measured Chlorophyll a Concentrations #### 5.1.2. WBID1926 Cedar Creek Table 1 provides a list of the water quality monitoring stations in the Cedar Creek WBID including the date range of the observations and the number of observations. Table 2 Water Quality Monitoring Stations for WBID 1926: Cedar Creek | Station | Station Name | First Date | Last Date | No. Obs. | |-----------------|----------------------------------|-----------------|-----------------|----------| | 112WRD 02300037 | CEDAR CREEK NEAR SARASOTA, FL | 1/18/1996 9:18 | 8/20/1997 10:45 | 16 | | 21FLGW 26911 | SW2-SS-2081 UNKNOWN SMALL STREAM | 9/22/2005 10:00 | 9/22/2005 10:00 | 5 | | 21FLMANATS-2 | CEDAR CREEK | 1/29/1996 11:35 | 9/14/1998 10:50 | 115 | | 21FLMANATS2 | TS2 | 1/29/1996 11:35 | 2/7/2008 11:23 | 800 | Figure 8 Station Locations for WBID: 1926 Cedar Creek ## **Dissolved Oxygen** Figure 9 provides a time series plot for the measured dissolved oxygen concentrations in Cedar Creek. There were 3 monitoring stations used in the assessment that included a total of 170 observations of which 63 (37%) fell below the water quality standard of 5 mg/l dissolved oxygen. The minimum value was 1.9 mg/l, the maximum was 11.9 mg/l and the average was 5.5 mg/l. Figure 9 WBID: 1926 Cedar Creek Measured Dissolved Oxygen ## **Biochemical Oxygen Demand** Figure 10 provides a time series plot for the measured BOD concentrations in Cedar Creek. There were 1 monitoring stations used in the assessment that included a total of 101 observations. The minimum value was 0.6 mg/l, the maximum was 5.6 mg/l and the average
was 2.7 mg/l. Figure 10 WBID: 1926 Cedar Creek Measured BOD #### **Nutrients** For the nutrient assessment the monitoring data for total nitrogen, total phosphorus and chlorophyll a are presented. While Florida is currently working on the development and promulgation of numeric nutrient criteria, the current standards for nutrients are narrative criteria. The purpose of the nutrient assessment is to present the range, variability and average conditions for the WBID. #### Total Nitrogen Figure 11 provides a time series plot for the measured total nitrogen concentrations in Cedar Creek. There were 4 monitoring stations used in the assessment that included a total of 166 observations. The minimum value was 0.29 mg/l, the maximum was 10.4 mg/l and the average was 1.3 mg/l. Figure 11 WBID: 1926 Cedar Creek Measured Total Nitrogen #### Total Phosphorus Figure 12 provides a time series plot for the measured total phosphorus concentrations in Cedar Creek. There were 4 monitoring stations used in the assessment that included a total of 152 observations. The minimum value was 0.04 mg/l, the maximum was 1.02 mg/l and the average was 0.197 mg/l. Figure 12 WBID: 1926 Cedar Creek Measured Total Phosphorus #### Chlorophyll a Figure 13 provides a time series plot for corrected chlorophyll a concentrations in Cedar Creek. There were 4 monitoring stations used in the assessment that included a total of 169 observations. The minimum value was 1.00 μ g/l, the maximum was 49 μ g/l and the average was 8.3 μ g/l. Figure 13 WBID: 1926 Cedar Creek Measured Chlorophyll a Concentrations ## 6. Source and Load Assessment An important part of the TMDL analysis is the identification of source categories, source subcategories, or individual sources of pollutants in the watershed and the amount of loading contributed by each of these sources. Sources are broadly classified as either point or nonpoint sources. Nutrients can enter surface waters from both point and nonpoint sources. A point source is defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Point source discharges of industrial wastewater and treated sanitary wastewater must be authorized by National Pollutant Discharge Elimination System (NPDES) permits. NPDES permitted facilities, including certain urban stormwater discharges such as municipal separate stormwater systems (MS4 areas), certain industrial facilities, and construction sites over one acre, are stormwater driven sources considered "point sources" in this document. Nonpoint sources of pollution are diffuse sources that cannot be identified as entering a waterbody through a discrete conveyance at a single location. For nutrients, these sources include runoff of agricultural fields, golf courses, and lawns, septic tanks, and residential developments outside of MS4 areas. Nonpoint sources generally, but not always, involve accumulation of nutrients on land surfaces and wash-off as a result of rainfall events. #### 6.1. Point Sources Point source facilities are permitted through the Clean Water Act National Pollutant Discharge Elimination System (NPDES) Program. There are no permitted point sources in the Braden River and Cedar Creek Watershed. #### 6.1.1. Municipal Separate Stormwater System Permits Municipal Separate Stormwater Systems (MS4s) are point sources also regulated by the NPDES program. According to 40 CFR 122.26(b)(8), a municipal separate storm sewer (MS4) is "a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains): - (i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law)...including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the Clean Water Act that discharges into waters of the United States. - (ii) Designed or used for collecting or conveying storm water; - (iii) Which is not a combined sewer; and - (iv) Which is not part of a Publicly Owned Treatment Works." Municipal Separate Storm Sewer Systems (MS4s) may discharge nutrients and other pollutants to waterbodies in response to storm events. In 1990, USEPA developed rules establishing Phase I of the National Pollutant Discharge Elimination System (NPDES) stormwater program, designed to prevent harmful pollutants from being washed by stormwater runoff into Municipal Separate Storm Sewer Systems (MS4s) (or from being dumped directly into the MS4) and then discharged from the MS4 into local waterbodies. Phase I of the program required operators of "medium" and "large" MS4s (those generally serving populations of 100,000 or greater) to implement a stormwater management program as a means to control polluted discharges from MS4s. Approved stormwater management programs for medium and large MS4s are required to address a variety of water quality related issues including roadway runoff management, municipal owned operations, hazardous waste treatment, etc. Phase II of the rule extends coverage of the NPDES stormwater program to certain "small" MS4s. Small MS4s are defined as any MS4 that is not a medium or large MS4 covered by Phase I of the NPDES stormwater program. Only a select subset of small MS4s, referred to as "regulated small MS4s", requires an NPDES stormwater permit. Regulated small MS4s are defined as all small MS4s located in "urbanized areas" as defined by the Bureau of the Census, and those small MS4s located outside of "urbanized areas" that are designated by NPDES permitting authorities. There is one permitted MS4s in the Braden River and Cedar Creek watershed (Table 3). Table 3 MS4 Permits Potentially Impacted by TMDL | Permit Name | Permit Number | County | |----------------|---------------|---------| | Manatee County | FLS000036 | Manatee | #### 6.2. Non Point Sources Nonpoint source pollution generally involves a buildup of pollutants on the land surface that wash off during rain events and as such, represent contributions from diffuse sources, rather than from a defined outlet. Potential nonpoint sources are commonly identified, and their loads estimated, based on land cover data. Most methods calculate nonpoint source loadings as the product of the water quality concentration and runoff water volume associated with certain land use practices. The mean concentration of pollutants in the runoff from a storm event is known as the Event Mean Concentration, or EMC. Table 4 provides the landuse distribution for the Braden River and Cedar Creek watershed which contains WBIDs: 3084 and 3073. The latest landuse coverages were obtained from the Florida Department of the Environment (FDEP) FTP site. The landuses are described using the Florida Landuse Classification Code (FLUCC) Level 1. The predominant landuse draining directly to Braden River and Cedar Creek is agriculture (87%). Table 4 Landuse Distribution in Braden River and Cedar Creek Watershed | Land Use Name | Area (ac) | Portion of
Watershed (%) | |---|-----------|-----------------------------| | AGRICULTURE | 48984.9 | 87.74 | | BARREN LAND | 403.5 | 0.72 | | RANGELAND | 809 | 1.45 | | TRANSPORTATION, COMMUNICATION AND UTILITIES | 329.5 | 0.59 | | UPLAND FORESTS | 3256.1 | 5.83 | | URBAN AND BUILT-UP | 593 | 1.06 | | WATER | 552.4 | 0.99 | | WETLANDS | 20706 | 37.09 | | Totals | 55827.5 | 100 | Figure 14 illustrates the landuses in the Braden River and Cedar Creek watershed. Figure 14 Braden River and Cedar Creek Landuse Distribution #### 6.2.1. Urban Areas Urban areas include land uses such as residential, industrial, extractive and commercial. Land uses in this category typically have somewhat high total nitrogen event mean concentrations and average total phosphorus event mean concentrations. Nutrient loading from MS4 and non-MS4 urban areas is attributable to multiple sources including stormwater runoff, leaks and overflows from sanitary sewer systems, illicit discharges of sanitary waste, runoff from improper disposal of waste materials, leaking septic systems, and domestic animals. In 1982, Florida became the first state in the country to implement statewide regulations to address the issue of nonpoint source pollution by requiring new development and redevelopment to treat stormwater before it is discharged. The Stormwater Rule, as outlined in Chapter 403 Florida Statutes (F.S.), was established as a technology-based program that relies upon the implementation of BMPs that are designed to achieve a specific level of treatment (i.e., performance standards) as set forth in Chapter 62-40, F.A.C. Florida's stormwater program is unique in having a performance standard for older stormwater systems that were built before the implementation of the Stormwater Rule in 1982. This rule states: "the pollutant loading from older stormwater management systems shall be reduced as needed to restore or maintain the beneficial uses of water" (Section 62-4-.432 (5)(c), F.A.C.). Nonstructural and structural BMPs are an integral part of the State's stormwater programs. Nonstructural BMPs, often referred to as "source controls", are those that can be used to prevent the generation of nonpoint source pollutants or to limit their transport off-site. Typical nonstructural BMPs include public education, land use management, preservation of wetlands and floodplains, and minimization of impervious surfaces. Technology-based structural BMPs are used to mitigate the increased stormwater peak discharge rate, volume, and pollutant loadings that accompany urbanization. #### 6.2.2. Agriculture Agricultural lands include improved and unimproved pasture, row and field crops,
citrus, and specialty farms. The highest total nitrogen and total phosphorus event mean concentrations are associated with agricultural land uses. ### 6.2.3. Rangeland Rangeland includes herbaceous, scrub, disturbed scrub and coastal scrub areas. Event mean concentrations for rangeland are about average for total nitrogen and low for total phosphorus. ## 6.2.4. Upland Forests Upland forests include flatwoods, oak, various types of hardwoods, conifers and tree plantations. Event mean concentrations for upland forests are low for both total nitrogen and total phosphorus. #### 6.2.5. Water and Wetlands These occur throughout the watershed and have very low event mean concentrations down to zero. #### 6.2.6. Barren Land Barren land includes beaches, borrow pits, disturbed lands and fill areas. Barren lands comprise only a small portion of the watershed. Event mean concentrations for barren lands tend to be higher in total nitrogen. ### 6.2.7. Transportation, Communications and Utilities Transportation uses include airports, roads and railroads. Event mean concentrations for these types of uses are in the mid-range for total nitrogen and total phosphorus. ## 7. Analytical Approach In the development of a TMDL there needs to be a method for relating current loadings to the observed water quality problem. This relationship could be: statistical (regression for a cause and effect relationship), empirical (based on observations not necessarily from the waterbody in question) or mechanistic (physically and/or stochastically based) that inherently relate cause and effect using physical and biological relationships. Two mechanistic models were used in the development of the TMDL for Braden River and Cedar Creek. The first model is a dynamic watershed model that predicts the quantity of water and pollutants that are associated with runoff from rain events. The second model is a dynamic water quality model that is capable of integrating the loadings from the watershed model to predict the water quality in the receiving waterbody. The period of simulation that was considered in the development of this TMDL is January 1, 2001 to January 1, 2008. The models were used to predict time series for total nitrogen, total phosphorus, BOD, dissolved oxygen, and chlorophyll a. The models were calibrated to current conditions and were then used to predict improvements in water quality as function of reductions in loadings. More details on the model application in the development of the Braden River and Cedar Creek TMDL are presented in Appendix A. ## 7.1. Loading Simulation Program C++ (LSPC) LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality overland as well as a simplified stream fate and transport model. LSPC is derived from the Mining Data Analysis System (MDAS), which was originally developed by EPA Region 3 (under contract with Tetra Tech) and has been widely used for TMDLs. In 2003, the U.S. Environmental Protection Agency (EPA) Region 4 contracted with Tetra Tech to refine, streamline, and produce user documentation for the model for public distribution. LSPC was developed to serve as the primary watershed model for the EPA TMDL Modeling Toolbox. LSPC will be used to simulate runoff (flow, total nitrogen, total phosphorus and BOD) from the land surface using a daily timestep for current and natural conditions of the Braden River and Cedar Creek watershed. The predicted timeseries will be used as boundary conditions for the receiving waterbody model to predict in-stream and in-lake water quality. ## 7.2. Water Quality Analysis Simulation Program (WASP) The Water Quality Analysis Simulation Program— (WASP7), is a dynamic compartment-modeling program for aquatic systems, including both the water column and the underlying benthos. The time-varying processes of advection, dispersion, point and diffuse mass loading and boundary exchange are represented in the basic program. The conventional pollutant model within the WASP framework is capable of predicting time varying concentrations for chlorophyll a, dissolved oxygen, nutrients (nitrogen, phosphorus) as function of loadings, flows, and environmental conditions. WASP was calibrated to the current conditions of the Braden River and Cedar Creek watershed using known meteorology, predicted loadings from the LSPC model and constrained by observed data in Braden River and Cedar Creek. Furthermore, WASP was used in determining the load reductions that would be needed to achieve the water quality standards and nutrient targets for the Braden River and Cedar Creek. #### 7.3. Scenarios Several modeling scenarios were developed and evaluated in this TMDL determination. A full description of each of these scenarios is presented in Appendix A. #### 7.3.1. Current Condition The first scenario is to model the current conditions of the watershed. This included the development of a watershed and water quality model. The watershed model is parameterized using the current landuses and measured meteorological conditions to predict the current loadings of nitrogen, phosphorus and BOD. These predicted loadings and flow time series are past on to the water quality model where the predicted algal, nitrogen, phosphorus, BOD and dissolved oxygen concentrations are predicted over time. The models (watershed and water quality) are calibrated to an eight year period of time to take into account varying environmental, meteorological or hydrological conditions on water quality. Table 5 presents the model calibration to annual average conditions | BRADEN RIVER
21FLMANABR2 | 2002–2008 Data
Average | 2002-2008 Model
Average | |-----------------------------|---------------------------|----------------------------| | Total Nitrogen (mg/l) | .8 | 0.9 | | Total Phosphorus (mg/l) | 0.14 | 0.17 | | DO (mg/l) | 6.9 | 7.2 | | Flow (cms) USGS
02300032 | 1.4 | 1.6 | **Table 5 Model Calibration Summary** Table 6 provides the annual average predictions for the Braden River and Cedar Creek segments, note that the minimum dissolved oxygen concentrations does not meet the water quality standard. | Braden River and Cedar
Creek @
21FLMANABR2 | 2002-2008 Model
Prediction Annual
Average | |--|---| | BOD (mg/l) | 3.5 | | Total Nitrogen (mg/l) | 0.75 | | Total Phosphorus (mg/l) | 0.13 | | DO avg (mg/l) | 5.2 | | DO min (mg/l) | 3.5 | **Table 6 Existing Condition Annual Average Model Predictions** The current condition simulation will be used to determine the base loadings for the Braden River and Cedar Creek. These base loadings (Table 7) compared with the TMDL scenario will be used to determine the percent reduction in nutrient loads that will be needed to achieve water quality standards. Table 7 Braden River and Cedar Creek Nutrient Loads (2002-2008) | Subbasin | Total Nitrogen
Load (kg/yr) | Total
Phosphorus
Load (kg/yr) | BOD Load
(kg/yr) | |---|--------------------------------|-------------------------------------|---------------------| | Braden River Watershed | 61,339 | 13,649 | 353,855 | | Cedar Creek Watershed | 4,544 | 1,095 | 24,779 | | Total of Braden River and
Cedar Creek Watersheds | 65,884 | 14,744 | 378,634 | #### 7.3.2. Natural Condition The natural condition scenario is developed to estimate what water quality conditions would exist if there were little to no impact from anthropogenic sources. There are no point source dischargers in the Braden River and Cedar Creek watershed. Any landuse that is associated with man induced (urban, agriculture, transportation, barren lands and rangeland) activities is converted to upland forests for purpose of this analysis and the associated event mean concentration for nitrogen, phosphorus and BOD are used. These natural condition loadings from the watershed model are passed onto the water quality model where natural water quality conditions are predicted. The natural condition water quality predictions are presented in Table 8. **Table 8 Natural Condition Annual Average Model Predictions** | Braden River and Cedar
Creek | 2002-2008 Model
Prediction Annual
Average | |---------------------------------|---| | BOD (mg/l) | 2.3 | | Total Nitrogen (mg/l) | 0.65 | | Total Phosphorus (mg/l) | 0.09 | | | |-------------------------|------|--|--| | DO avg (mg/l) | 7.2 | | | | DO minimum (mg/l) | 5.8 | | | The purpose of the natural conditions scenario is determine whether water quality standards can be achieved without abating the naturally occurring loads from the watershed. Table 9 provides the annual average loads under natural conditions. **Table 9 Natural Condition Annual Average Nutrient Loads** | Subbasin | Total Nitrogen
Load (kg/yr) | Total
Phosphorus
Load (kg/yr) | BOD Load
(kg/yr) | |---|--------------------------------|-------------------------------------|---------------------| | Braden River Watershed | 21,630 | 2,831 | 174,892 | | Cedar Creek Watershed | 1,272 | 164 | 10,005 | | Total of Braden River and
Cedar Creek Watersheds | 22,902 | 2,995 | 184,898 | #### 7.4. 30 Percent Reduction Scenario The 30 percent reduction of nutrient loads with corresponding reduction of SOD. Table 10 provides the 30% reduction annual loads and Table 11 the resultant predictions for total nitrogen, total phosphorus and dissolved oxygen and would achieve the dissolved oxygen standard of 5 mg/l. Table 10 30% Reduction of Annual Average Nutrient Loads | Subbasin | total nitrogen
Load (kg/yr) | TP Load
(kg/yr) | BOD Load
(kg/yr) | |---|--------------------------------
--------------------|---------------------| | Braden River Watershed | 30,670 | 6,824 | 176,927 | | Cedar Creek Watershed | 2,272 | 548 | 12,389 | | Total of Braden River and
Cedar Creek Watersheds | 32,942 | 7,372 | 189,317 | Table 11 30% Reduction of Annual Average Nutrient Concentrations | Braden River and
Cedar Creek | 2002-2008 Model
Prediction Annual
Average | |---------------------------------|---| | BOD (mg/l) | 2.8 | | Total Nitrogen (mg/l) | 0.6 | | Total Phosphorus (mg/l) | 0.08 | | DO avg (mg/l) | 6.2 | |-------------------|-----| | DO minimum (mg/l) | 5.0 | #### 7.4.1. TMDL The TMDL scenario determines how much the current loadings would need to be reduced to achieve the applicable water quality standards (dissolved oxygen) and nutrient (nitrogen and phosphorus) interpretation of the narrative to protect against imbalance of flora and fauna. The predicted loading from the current conditions watershed model are incrementally reduced in the receiving waterbody model until the dissolved oxygen concentrations are above 5 mg/l or at natural background conditions. Table 12 presents the average values for total nitrogen, total phosphorus, BOD, chlorophyll a, and dissolved oxygen for the TMDL scenario. | Braden River and Cedar
Creek Watersheds | total nitrogen
Load (kg/yr) | TP Load
(kg/yr) | BOD Load
(kg/yr) | |--|--------------------------------|--------------------|---------------------| | Existing Conditions | 65,884 | 14,744 | 378,634 | | 30% Reduction | 46,119 | 10,321 | 265,044 | | Percent Reduction | 30% | 30% | 30% | **Table 12 TMDL Reduction Scenario** ## 8. TMDL Determination A total maximum daily load (TMDL) for a given pollutant and waterbody is comprised of the sum of individual wasteload allocations (WLAs) for point sources, and load allocations (LAs) for both nonpoint sources and natural background levels. In addition, the TMDL must include a margin of safety (MOS), either implicitly or explicitly, to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. Conceptually, this definition is represented by the equation: $$TMDL = \sum WLA_S + \sum LA_S + MOS$$ The TMDL is the total amount of pollutant that can be assimilated by the receiving waterbody and still achieve water quality standards and the waterbody's designated use. In TMDL development, allowable loadings from all pollutant sources that cumulatively amount to no more than the TMDL must be set and thereby provide the basis to establish water quality-based controls. These TMDLs are expressed as annual mass loads, since the approach used to determine the TMDL targets relied on annual loadings. The TMDLs targets were determined to be the conditions needed to restore and maintain a balanced aquatic system. Furthermore, it is important to consider nutrient loading over time, since nutrients can accumulate in waterbodies. The TMDL was determined for the loadings coming from the upstream watershed and watershed that directly drains to Braden River and Cedar Creek. The allocations are given in Table 13. The MS4 service area is expected to reduce its loadings at the same percentage as the load allocation. Table 13 TMDL Load Allocations for Braden River and Cedar Creek (1914 and 1926) | | Current Condition | | TMDL Condition | | LA & MS4 | |-------------------------|-------------------|------------|----------------|------------|-------------| | Constituent | WLA (kg/yr) | LA (kg/yr) | WLA (kg/yr) | LA (kg/yr) | % Reduction | | Total Nitrogen | N/A | 65,884 | N/A | 46,119 | 30% | | Total Phosphorus | N/A | 14,744 | N/A | 10,321 | 30% | | BOD | N/A | 378,634 | N/A | 265,044 | 30% | #### 8.1. Critical Conditions and Seasonal Variation EPA regulations at 40 CFR 130.7(c)(1) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The critical condition is the combination of environmental factors creating the "worst case" scenario of water quality conditions in the waterbody. By achieving the water quality standards at critical conditions, it is expected that water quality standards should be achieved during all other times. Seasonal variation must also be considered to ensure that water quality standards will be met during all seasons of the year, and that the TMDLs account for any seasonal change in flow or pollutant discharges, and any applicable water quality criteria or designated uses (such as swimming) that are expressed on a seasonal basis. The critical condition for nonpoint source loadings and wet weather point source loadings is typically an extended dry period followed by a rainfall runoff event. During the dry weather period, nutrients build up on the land surface, and are washed off by rainfall. The critical condition for continuous point source loading typically occurs during periods of low stream flow when dilution is minimized. Although loading of nonpoint source pollutants contributing to a nutrient impairment may occur during a runoff event, the expression of that nutrient impairment is more likely to occur during warmer months, and at times when the waterbody is poorly flushed. Because of the eight year simulation period used in the model development, the model encompasses both critical and seasonal variations to determine the annual average allowable load. ## 8.2. Margin of Safety The Margin of Safety accounts for uncertainty in the relationship between a pollutant load and the resultant condition of the waterbody. There are two methods for incorporating a MOS into TMDLs (USEPA, 1991): - ➤ Implicitly incorporate the MOS using conservative model assumptions to develop allocations - Explicitly specify a portion of the total TMDL as the MOS and use the remainder for Allocations This TMDL uses an implicit margin of safety as a TMDL targets for nutrients were set to natural background conditions. #### 8.3. Waste Load Allocations Only MS4s and NPDES facilities discharging directly into lake segments (or upstream tributaries of those segments) are assigned a WLA. The WLAs, if applicable, are expressed separately for continuous discharge facilities (e.g., WWTPs) and MS4 areas, as the former discharges during all weather conditions whereas the later discharges in response to storm events. #### 8.3.1. NPDES Dischargers There are no point source dischargers in the Braden River and Cedar Creek watershed, therefore there are no allocations specified. #### 8.3.2. Municipal Separate Storm System Permits The WLA for MS4s are expressed in terms of percent reductions equivalent to the reductions required for nonpoint sources. Given the available data, it is not possible to estimate loadings coming exclusively from the MS4 areas. Although the aggregate wasteload allocations for stormwater discharges are expressed in numeric form, i.e. percent reduction, based on the information available today, it is infeasible to calculate numeric WLAs for individual stormwater outfalls because discharges from these sources can be highly intermittent, are usually characterized by very high flows occurring over relatively short time intervals, and carry a variety of pollutants whose nature and extent varies according to geography and local land use. For example, municipal sources such as those covered by these TMDLs often include numerous individual outfalls spread over large areas. Water quality impacts, in turn, also depend on a wide range of factors, including the magnitude and duration of rainfall events, the time period between events, soil conditions, fraction of land that is impervious to rainfall, other land use activities, and the ratio of stormwater discharge to receiving water flow. These TMDLs assume for the reasons stated above that it is infeasible to calculate numeric water quality-based effluent limitations for stormwater discharges. Therefore, in the absence of information presented to the permitting authority showing otherwise, these TMDLs assume that water quality-based effluent limitations for stormwater sources of nutrients derived from this TMDL can be expressed in narrative form (e.g., as best management practices), provided that: (1) the permitting authority explains in the permit fact sheet the reasons it expects the chosen BMPs to achieve the aggregate wasteload allocation for these stormwater discharges; and (2) the state will perform ambient water quality monitoring for nutrients for the purpose of determining whether the BMPs in fact are achieving such aggregate wasteload allocation. The percent reduction calculated for nonpoint sources is assigned to the MS4 as loads from both sources typically occur in response to storm events. Permitted MS4s will be responsible for reducing only the loads associated with stormwater outfalls which it owns, manages, or otherwise has responsible control. MS4s are not responsible for reducing other nonpoint source loads within its jurisdiction. All future MS4s permitted in the area are automatically prescribed a WLA equivalent to the percent reduction assigned to the LA. Best management practices for the MS4 service should be developed to meet the percent reduction for both nitrogen and phosphorus as prescribed in Table 13. #### 8.4. Load Allocations The load allocation for nonpoint sources was assigned a percent reduction from the current loadings coming into Braden River and Cedar Creek. # 9. References Florida Administrative Code. Chapter 62-302, Surface Water Quality Standards. Florida Administrative Code. Chapter 62-303, Identification of Impaired Surface Waters. Harper, H. H. 1993. Stormwater loading rate parameters for Central and South Florida. Environmental Research & Design, Inc. Orlando, FL. Keenan, L. W., E. F. Lowe, and D. R. Dobberfuhl. 2003. Pollutant load reduction goals for the Upper St. Johns River Basin. St. Johns River Water Management District,
Division of Environmental Sciences, Palatka, FL.